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SECONDARY INSTABILITY OF COMPRESSIBLE BOUNDARY LAYER 

TO SUBHARMONIC THREE-DIMENSIONAL DISTURBANCES 
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ABSTRACT 

Three-Dimensional linear secondary instability theory is extended for 

compressible boundary layers on a flat plate in the presence of finite amplitude 

Tollmien-Schlichting (T-S) wave. The focus is on principal parametric resonance 

responsible for strong growth of subharmonics in low disturbance environment. 

I. INTRODUCTION 

Whatever theoretically or experimentally, the compressible stability theory 

lack a firm connection with boundary-layer transition."There is little doubt 

that transition is preceded by linear instability in many instances, but the way 

these individual unstable waves act, alone or in combination , to trigger the 

transition process is not known" [l]. The nonlinear theories and the secondary 

instability that are much a prominent feature of incompressible stability theory 

do not exist for compressible boundary layer. 
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Recently, Erlebacher and Hussaini [2,3] by using direct simulation of 

parallel boundary layer, generated numerically a high Mach number vortical 

structure (peak-vally) similar to that observed and computed for incompressible 

flows. 

Stimulated by this work, we formulated the secondary three-dimensional 

instability problem for compressible boundary layers. In this paper, we 

investigate theoretically the effect of finite amplitude two-dimensional (2D) 

wave on the growth of three-dimensional (3D) perturbations in compressible 

boundary layers. Hence, this paper covers only a range of Mach numbers up to 

the transonic, where the critical primary disturbance is 2D. For supersonic 

boundary layers, the critical primary disturbance is 3D,or a 2D second mode. 

This range of Mach numbers is currently under investigation. An analysis 

similar to that of Herbert [4], Herbert et a1 [5] and Nayfeh [ 6 ]  is followed 

here but spatial stability is considered for both primary and secondary 

instabilities. 

The primary instability leads to the growth of T-S waves and a streamwise 

almost periodic modulation of the flow. We study the linear stability of this 

flow with respect to spanwise periodic 3D disturbence. Floquet theory gives as 

a solution to the stability equations, all various types of resonance. We 

consider the case of principal parametric resonance responsible for strong 

growth of subharmonics in low disturbance environment. 

11. PRIMARY INSTABILITY AND THE BASIC FLOW 
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We cosider the primary instability of the 2D compressible boundary layer on 

a flat plate, with respect to 2D quasi-parallel spatially growing T-S 

disturbances. The critical disturbance is 2D up to the transonic range of Mach 

numbers [7]. The flow field is governed by the 2D compressible Navier-Stokes 

equations,the energy equation and the state equation. Dimensionless quantities 

are introduced by using the reference velocity U, and the referece length 

L = t-, so that Reynolds number is given by R = i n ,  where x measures 

the distance from the leading edge of the plate, andu is the fluid kinematic 

viscosity. The thermodynamic and transport properties of air (treated as 

perfect gas) are made dimensionless using their corresponding freestream values. 

At sufficiently large distance from the leading edge, primary instability 

of the compressible laminar flow occurs with respect to T-S disturbances. These 

disturbances take the traveling wave form, 

exp [i(joC dx -dt)] + C.C. 

Where the y-axis is defined normal to the flat plate, u and v are the 

disturbance velocities, p is the disturbance pressure, t is the disturbance 

temperature, p is the disturbance density. p is the disturbance viscosity, and 

For the spatial stability analysis o( is a complex wavenumber given by 

o( =o(r+ ioli and 0 is a real disturbance frequency, and C.C. denotes complex 

conjugate terms. The eigensolutions u,v,p and t are governed by a six-order 

system of equations that is given in reference (9). The density disturbance is 
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related to the temperature and pressure disturbances through the state equation, 

while the viscosity disturbance is related to the temperature disturbance by 

( 3 )  
h 

p = ( d F / d T ) t =  y t  

" - 
where p and p are the mean-flow density and viscosity respectively,y is the 

ratio of specific heats and M,is the freestream Mach number. The six-order 

system is numerically integrated as initial value problem using a combination of 

shooting [8] and Newton-Raphson iteration technique that employs a Gram-Schmidt 

orthonormalization procedure. The solution of this eigenvalue problem is 

calculated by the author elsewhere [ 7 , 9 ] .  

The linear stability theory of primary instability provides O( for a given 

and R. Then the integration of the growth rate -o(i gives the amplification 

factor , 

( 4 )  In ( A / A,, ) = - 2 j R  Oci dR 

where A,, is an arbitrary initial amplitude of the primary instability at R (R 

where the onset of the primary wave) . The eigensolutions may be normalized 
f O P  

such that A measures directly the maximum r . m . s .  value of the streamwise 

disturbance, that is 

2 
( 5 )  max {u(y)( = 1/2 

ocyco6 

Since the primary instability of boundary-layer flows is induced by viscosity, 

the growth rates and amplification factors here are typically very small. 
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Now the basic state under consideration i s  composed of the sum of the 2D 

compressible mean flow and a finite amplitude A of the primary T-S wave, that is 

Where 

A = Ae exp(- o(i dx), assumed constant, and 

e = J ~ ( ~ d x - ~ t  

111. SECONDARY SUBHARMONIC INSTABILITY 

We consider the 3D quasi-parallel spatial subharmonic instability of the 

basic state given by (6). The finite amplitude primary wave acts as a 

parametric exitation on the secondary instability. Following the analysis of 

Herbert [ 4 , 5 ]  , Nayfeh [ 6 ] ,  and El-Hady [ l o ]  we apply Floquet theory and express 

the secondary wave using the normal mode concept, 

( 7 )  

A 

where p is a spanwise real wavenumber, and 'I = y,+ ifi is a characteristic 

exponent. The spatial growth rate of the secondary wave is given by , while 

$ can be interpreted as a sh&@ in the streamwise wavenumber. In our 

calculations, we consider only the case of r'; = 0, that is the secondary wave is 

perfectly synchronized with the basic state. 



The secondary wave (7) is superposed on the basic state ( 6 )  and the result 

is substituted into the dimensionless Navier-Stokes equations. The meam flow 

plus the 2 D  T-S quantities are substracted, and the resulting equations are 

linearized in the secondary disturbances. Then one obtains an eigenvalue 

problem that can be written as 

+ A (a,) = 0 

(9) 

-I A A -1 2 
+ g z6 - R D ( y  DU) Z 7  - p R DU Z e +  A (a2) + A (bZ) = 0 

A - \  2 

- p R DU g 2, + A (a,) + A (bj) = 0 

2 
- p Z6 + A  (a ) + A  (b ) = 0 4 4 
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-I - I  L 2 
DZ ) + A (a,) + A ( b  ) = 0 3 - R  Pr ( 2 z s ~ F - y  

where 

h h A A 
Z I = U  , Z ~ = D U  , Z ~ = V  , Z q = w ,  

A h A A 
Z g = D w  , Z6 = p  , Z7= t , Z g = D t  

G = T  -I ( g U - z i d )  1 

h 2: 
M = ( y -  1 ) M, 

also Pr is Prandtl number, D=d/dy, and m=2(e-1)/3 is  the ratio of the 

coefficients of viscosities, where e=O corresponds to the Stokes hypothesis. 

The boundary conditions are 

z\ = z j =  z4= 27 = 0 at y= 0 
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Equations (8) - (12)  govern the secondary 3 D  instability of compressible 2 D  

flows. They represent the mass, x-momentum, y-momentum, z-momentum, and energy 

equations respectively. The coefficients of A and A ( ai, bi, 111-5 ) are given 

in Appendix A. The coefficients of A in the mass equation and those of A in 

all other equations are new in this system of equations in contrast to the 

secondary instability equations for incompressible flows. These coefficients 

are present mainly due to the density disturbance of both primary and secondary 

instabilities. In the incompressible limit eqations (8) - (12)  reduce exactly to 

that given by El-Hady [ l o ] .  When A=O,the system of equations (8)-(13) govern a 

primary subhamonic 3 D  wave. 

2 

2 

The system of equations (8)-(12)  can be written as eight complex equations 

in the form, 

d 

DZg + CZ D Z 3  + ~3 = 0 

L 

D Z g  + ~4 D Z j  + CS = 0 

DZ, - Z B =  0 

DZ, + c DZ + Cq = O S B  

Where the CIS are quadratures in the primary and secondary disturbance 
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quantities, and the overbar indicates a complex conjugate. Equations (14) are 

numerically integrated as initial value problem from y = ye (edge of the 

boundary layer) to the wall. The eigenvalue search used a Newton-Raphson 

iteration technique to satisfy the last boundary condition at the wall. A well 

tested code SUPORT [8] is used which is coupled with an orthonormalization test 

based on the modefied Gram-Schmidt procedure to overcome the stiffness of the 

integrated system of equations. 

The linear stability theory of the secondary instability provides i for a 

given p and R. Then the integration of the growth rate I(r gives the 

amplification factor, 

R 
In ( S / S,) = 2 1  - $dR 

where Sois an arbitrary initial amplitude of the secondary instability at Res (R 

where the onset of the secondary wave) . The secondary subharmonic instability 

is believed to originate from a strong mechanism of combined tilting and 

stretching of the vortices such as the case of incompressible flows [ l o ] ,  thus 
the growth rates and amplification factors are expected to be large as they 

occur on a convective length scale. 

IV. RESULTS AND DISCUSSION 

For the incompressible limit (Mq= 0), our compressible secondary 

instability code gives results that are in full agreement with those obtained by 

Herbert et a1.[5] and by El-Hady [ l o ] .  All results reported here are for the 
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nondimensional frequency F = W / R = 60E-6 , that remains fixed as a wave of 

fixed physical frequency travels downstream. 

At Mm= 0 ,  a primary 2D instability grows between R = 554 and R , P  = 1052 

(first and second neutral points) reaching a maximum amplification factor of 

A/AO = 41.68. As Mach number increases, the growth rates of the primary 2D 

waves decrease as shown in Fig.(l). Also the first and second neutral points as 

well as the streamwise location where the maximum growth rate occurs shift to 

the left, they occur earlier upstream as Mach number increases. Fig.(2) shows a 

reduction in the amplification factor of the primary 2D instability as Mach 

number increases. 

OQ 

Almost in the same region where the primary 2D waves are growing, a broad 

band of spanwise wavenumbers of primary 3D subharmonic waves are subject to 

amplification. Fig.(3) shows the growth rate curves of these primary 3D 

subharmonics (F = 30E-6) for different Mach numbers. These curves possess the 

same features of the primary 2D waves of having lower growth rates that shift to 

lower R as Mach number increases. Fig.(4) shows the amplification factors of 

these primary subharmonics. Both Figs.(3) and (4) suggest that the growth rates 

and amplification factors of the primary subharmonics are typically so small to 

bear any resemblence to experimentally observed transition. 

However, the growth rates shown in Fig.(5) as function of the spanwise 

wavenumber .B =10E+3 B / R  for secondary 3D subharmonics, are much larger than 

those for primary 2D waves or primary 3D subharmonics. This strong growth is 

due to the parametrical exitation by the finite amplitude primary 2D wave. 
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Fig.(5) is calculated at R=850 and a primary 2D amplitude A =.01, for different 

Mach numbers. For high spanwise wavenumbers (B>.225), compressibility appears 

to have a stabilizing effect on the secondary subharmonic instability. In other 

words, the secondary subharmonic instability is largest at M,= 0, and decreases 

as Mach number increases. But for low spanwise wavenumbers (B<.225) the effect 

of compressibility depends on the value of the spanwise wavenumber. 

At fixed F and R, results for different Mach numbers show a destabilizing 

effect higher growth rates for the secondary subharmonic ) as the primary 2D 

amplitude A increases. At R=1050, Fig.(6) illustrates the destabilizing effect 

of increasing A for %=0.8 compared with that for M,=O. Fig.(6) reveals that 

the influence of compressibility on secondary subharmonics is not only function 

of the spanwise wavenumber, but also is function of the primary 2D amplitude. 

While at A=.01 compressibility is stabilizing for large values of B and 

destabilizing for small values of B, it has a destabilizing influence on the 

secondary subharmonics at A=.002 for all range of spanwise wavenumbers. The 

figure also shows that at very small amplitudes, considerable growth rates exist 

in a small band of wavenumbers, that extends to larger values as the amplitude 

increases. 

( 

Fig.(7) shows the effect of Reynolds number R on the growth of the 

secondary subharmonics at M,=0.8. As R increases , an increase in the growth 

rates exist at fixed F and A. 
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To evaluate the overall effect of compressibility on the secondary 

subharmonics, we can combine the influence of increasing the amplitude A of the 

primary 2D wave and increasing R for various Mach numbers at fixed F. For 

comparison purposes, the amplification factor of the subharmonic is calculated 

using equation (15) from RQS( onset of the secondary subharmonic instability) to 

any R downstream. For different Mach numbers, Fig. ( 8 )  shows the variation of 

the growth rates of the secondary subharmonics with R at a spanwise wavenumber 

B=.15. The initial primary 2D amplitude used for these calculations is A=.001. 

Fig.(9) shows the amplification factors decreasing from about 29 at Mm=O. tO 12 

at M,=0.8. 

Figs.(8) and (9) indicate that while the growth rates and amplification 

factors of the secondary subharmonics are decreased by increasing Mach 

number,the onset of the secondary instability is almost not affected. This is 

probably due to the combined effect of the upstream shift of the onset of the 

primary 2D instability, as well as the growing of the primary amplitude. 

V. CONCLUSION 

We formulated the secondary three-dimensional instability problem for 

compressible boundary layers. The effect of finite amplitude two-dimensional 

T-S wave on the growth of three-dimensional subharmonics is investigated for a 

range of Mach numbers from 0 to 1.2. Numerical results for F =60E-6 show that I 

the local (at fixed R) effect of compressibility on the secondary subharmonics 

may be stabilizing or destabilizing depending upon their spanwise wavenumbers, 
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as well as the finite amplitude of the primary 2D wave.However, the overall 

effect of increasing Mach number is a reduction in the growth rates and 

amplification factors of the secondary subharmonics, almost with no change in 

the streamwise location where this instability sets in. 
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APPENDIX A 

a ,  = f ( g  ?, + /3 ) + D ( f  z3) + g U T  + D ( v 7 )  

b, = 0 

- -\ - I  A -I -\ h 

+ [ T V - R  D( p t ) ] ? z +  [ f D U + T  D u - R  g D (  y t ) ]  Z 3  

b L h A 

- R t D Z 2 -  R ( mg +; ) t D Z a + R P  ( m,: + i m M )  t Z 4  
h 2 -  - R [ m 2 H  (i +o( ) u + ( i m , * +  m DV + D u 1 27 

- L - 4 - -  
b 2 =  [ ( g + i o ( ) f  u + g f  u ]  Z , + (  f v + f  v ) Z 2 + (  f D u + f  D Z ) Z 3  

. - A  - -I h 4 -I h + [ i T  O( v - m R D( p t )  5 ] Z , -  R ( m ,  g + i o ( )  t Z 2  - m R p D( p t )  24  
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L - 
bg = io( ( f v - f 5 ) Z I + [ ( u + f < ) g + f Dv + f D Y  ] Z3 

a -  - + ( f v + f 7 ) D Z 3 +  [ 2v D Y +  i a (  v u - v u ) ]  F 

- - 
= ( f  u + f  u )  g z q +  ( f  v + f  ;) z5 b4 

2 2  - 2  -I - A h  -I A 
a = { f z + T  g u - 2 M R D U ( D u + i O ( v ) - P r  [ R t ( g  + 2 i o ( g - M  - P I  

5 

A ,  + R'' D( F D t  ) ] }  ?, + [ i (MU -d) t + v DT ] - M g u zb 

h 3 -I -I h h 2. -I I 

- M v D Z 6 + [ T  v - P r  ( 2 R D t + t R D p ) ] Z g - R P r  t D Z s  

- I  n c -  - 2 M R  [ ( i # v + D u ) + P  t DU ] ( ; a +  g Z 3 )  

4 n + ( T D t  + f DT - M Dp ) 

A -I - - 2M R p [ ( i m W  u + mZDv ) D Z 3 +  m p  ( i o (  u + Dv ) 4 ] 
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2 
I + m #  ( u + <  v ) + m2Dv D f +  D ~ D u  3 Z7 

+ [ io( ( t - u ) 4-3 Dt + v DF ] F + ( TV + f 7 ) Zs 

-I 
, +[io(( t y - y f  ) - 2 M R  i m t y g ( ~ u - t ~ )  ] Z, 

A h  - - 2 M R ( t Du + t DZ + io< ( 'f v - t 7 ) ( Z z  + g Za ) 

I - A h  

+ ( f Dt + f D r )  Z3 - 2M R m2 ( 7  Dv + t D 3 )  DZ3 

j m, = &l, m t =  &2 

l and the overbar denotes complex conjugate. The overbar in and the subscript 
r in O(r are omitted for simplicity ( p is p and o( is wf) .  
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Fig.3 Growth rates of the primary 3D subharmonic wave 
(F=30E-6 and B=.12) at different Mach numbers. 

20 



I 
M 
3 m 

MRCH 

0 0.0 
0 0 * q  
0 0.8 
n 1.2 

-l! I I I I I I I I I I 1 I I I 
1150 600 750 300 1050 1200 1350 1500 

R 

Fig.4 Amplification factors of the primary 3D 
subharmonic wave (F=30E-6 and B=.12) at different Mach 
numbers . 

21 



U -  rdu 

o n o a  

! 3 a  
m a  

m 
h ual a s  a u  
C 
o w  
0 0  
al 
m e  

o m  
Q) .rl u 
s u a ,  u 0 P  e e  
w 5 5  
o w  c 

22 



0cDmCu 

0 0 0 0  
a . - 0 0 0  

I I I I I I I I 
OD f. 

f. 0 cu s 2 N 
0) cu cu 

0 

. . . .  

4 0  
7 0 f. 

o o o a  

0 .  
I I  I I  
11 o u  
x x  a a  

I 
I 
I 
I 
I 
I 
I 
I 
I 

? B  
I /  
I /  
I /  

I 
I 

I 
I 
I 

I 
I 
I 
I 

a 

23 



a \ 
O m Y C u  
- 0 0 0  
0 0 0 0  . . . .  

o o o a  

m o  m -  

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

n 
b 

c 

/y I I 

I 

I 
i 

I 
I 

v ) &  
a l o  
u w  
(d 
Lc 

u u  
(d 

C 
0 

4 i J  
0 .A 
G c a d  
A m  a 

. w  
b o w  

24 



MRCH 0 /o-o\o \ 

R 

Fig.8 Variation of the growth rates  with R of a 
secondary 3 D  subharmonic a t  B=.15 for different  Mach 
numbers. 

25 



qo 

35 

30 

0 

MRCH 

- 
- 
- 
- 
- 

- 

0 0.0 
0 0 * L l  

0 0.8 
a 1.2 

SEC- SUB. 
PR I MRRY 

0 P - O  

5 

0 

-5 
0 

\ 
\ -  

‘0 R 

Fig.9 Variation of the amplification factors with R of 
a secondary 3D subharmonic at B=.15 for different Mach 
numbers. 

26 



Nalmal k m u t c s  and l -  Space Adminislrallon 

1. Report No. 

NASA CR-4144 

Report Documentation Page 
2. Government Accession No. 

17. Key Words (Suggested by Author(s)l 

7. Author(s1 

Nabil M. El-Hady 

18. Distribution Statement 

9. Performing Organization Name and Address 

Old Dominion University 
Department of Mechanical Engineering and Mechanics 
Norfolk, VA 23508 

12. Sponsoring Agency Name and Address 

National Aeronautics and Space Administration 
Langley Research Center 
Hampton, VA 23665-5225 

19. Security Classif. (of this report) 20. Security Classif. (of this page) 

Unclassified Unclassified 

3. Recipient's Catalog No. 

21. No. of pages 22. Price 

32 A0 3 

5. Report Date 

May 1988 

6. Performing Organization Code 

8. Performing Organization Report No. 

10. Work Unit No. 

505-60-21-01 

11. Contract or Grant No. 

NAG1 - 7 2 9 
13. Type of Report and Period Covered 

Contractor Report 

14. Sponsoring Agency Code 

15. Supplementary Notes 

Langley Technical Monitor: William D. Harvey 

16. Abstract 

Three-dimensional linear secondary instability theory is extended for 
compressible boundary layers on a flat plate in the presence of finite 
amplitude Tollmien-Schlichting (T-S) wave. The focus is on principle 

parametric resonance responsible for strong growth of subharmonics in low 
disturbance environment. 

Secondary instability 
Three-dimensional instability 
Compressible boundary layers 

Unclassified-Unlimited 

Subject Category 34 


